Bash Notes

Basic Bash How-To (A Real language?)

Jonathan Bell

version 0.1

1 Variables

Variables in bash are not strongly typed. You can define
variables as such:-

$>myvar=123 <-- do not leave spaces
$>myvar="Test" <-- do not leave spaces

And then reference them as such:-

$>echo "$myvar’

Bash also uses special variables. for instance if you run
a bash script the arguments can be gained from within
a script:

$>myscript.sh argl arg2

The following is a summary of some of the more useful
special arguments

$> echo $0 <-- returns myscriipt.sh

$> echo $1 <-- returns argl

$> echo $2 < --returns arg?2

$> echo $# <--returns the number of arguments past to the script (2)
$> echo $! <-- pid of the application last put into background mode
$> echo $$ <-- This returns the pid of the shell

$> echo $7? <-- This shows the last result from calling an application

A common example is to confirm the number of argu-
ments past to a script. Showing an usage example if the
number is incorrect.

Example script:-

#!/bin/bash

usage ()

{
echo "Wrong number of Arguments given"
echo "Usage: test.sh argl arg2 arg3"

}

if [[$# !'=3 1]
then

usage;

exit -1;

fi

echo "All is fine";

The preceding script shows some basic operations of
a bash script. The first line often called the hash bang,
tells the shell where to find the interpreter. Note this
may be different on your system. It is useful to run the
which command to find it.

$>which bash
$>/bin/bash

The usage() is a function definition in bash. It is often
useful to split your code up into sensible blocks.

The if...fi is a decision block. Bash often starts and
ends a functional areas with an inverted word such as
if.fi or case, esac

The ’[[]| or ’[]’ are decision blocks, which will give
different interpretations. Note a common mistake is not
to ensure you have spaces within the block.

2 If Comparisons

The ’if” command is often used within bash, it has the following
format

if [$value = "y"]

then

echo "do something"

elif [$value = "n"]
then

echo "Do something else"
else

echo "Default action"

fi

You can also nest if blocks within other ’if blocks’.

2.1 if Numeric Comparisons

echo "Guess a Number 1-3 "
read val

if [$val -eq 3 1;

then

echo " you entered 3"
elif [$val -eq 4 1; then

2.2 Using OR in a if comparison

if [$age -gt 18 -o $age -1t 30]
then

echo "You can come in"

$>fi

2.3 Other Numeric comparison

-a <- and

-eq <- equal

-ne <- not equal

-1t <- less than

-gt <- greater than

-ge <- greater or equal
-le less than or equal

2.4 String if Comparison

z="Test"

y="Test"

if [test $y=$%z]
then

echo "The Same"
fi

2.5 Using the ’[[]]” Method

if [[$z == $y 1]
then
echo "Same"
fi

Note with the ’[[’ use '==" comparison, and for ’[" use the single
'=" comparison

2.6 Checking for an empty string

if [-z $str]

then

echo "String is empty"
fi

2.7 Other if String comparisons

-n <- not empty

!= <- not eqaul to

<,> <- alphabetical comparison
=" <- Regex check

if [$z "= "~ [Te]’];then
echo "Starts with Te"
fi

3 Loops

3.1 for

for I in {1,2,3,4}

do
echo "loop $i"
done

3.2 while
x=0
while [$x -1le 4 1;
do
echo "number = $x";
x=$((x + 1))
done

3.3 Across a list of files

for i in ./*

do

echo "file = $i"
done

4 Command Expansion

The () brackets expand the results of an eternal command

files=$(1ls) <-- expands the list command into the variable files

5 Arithmetic Expressions

The double (()) brackets can be used to perform numeric calcula-

tions

mycal=$((2+3)) <- aritmetic expansion

6 Input and Output

read myvar
read -p "Enter a value" myvar
read -sp "Enter a password" mypass <-- hide what the user types

10

7 The case statement

The case statement is often useful when you have multiple choices
to make

echo "Type a Number"
read val

case $val in

1)

echo "You selected 1"
2)

echo "You selected 2"
*)

echo "Default"

esac

8 Useful command from a bash terminal

8.1 history

Bash will like a good shell keep a log of what you type, allowing you
to scroll back to a past command Search using Ctrl4-s or Ctrl4r

$> history <- show a list of commands

$>159 <- run command 59 again

$>history -w <-- write the history to the .bash_histroy file

$> history -c <-- clear your history

$> history -d 58 < -delete line 58 from history, ueful if you type a
password in by mistake

8.2 aliases

You can create an alias for a command, this is useful if you want
to create your own command from a list of commands or command
options, the most famous of these being ’lI’ which is an alias to ’lIs
-al’

$>alias GREPC="find . -type f -name ’*.[ch]" -exec grep -iHn $1 \{} \;"
$> GREPC main <-- searches all c files for the word main

11

8.3 Pipes and redirection

Pipe a output from one command to the input of another command

cat file.txt | sed ’s/word/Word/g’ <- prints the content of file.txt
passes this to sed to search for word and replace it by Word,
note if you put -i in the sed command it will change the input
file.

Redirection to a file

$>echo "Hello World" > file.txt <- write to file flushing content

$>echo "Hello World Again >> file.txt <- append to existing content

$>gmake 2>&1 result.txt <-Print both standard output and standard error
to a file

8.4 Configuration files

Dependent on the platform, git bash, bash or QNX terminal config-
uration files are available to store aliases,functions etc for continuous
use.

Common files include .bashrc j- basic settings
.profile j- often for aliases

8.5 Debugging Bash

set -x <- enablle debuf on your terminal
set +x <-switch off debug

12

